La distance euclidienne est une mesure de distance géométrique dans un espace à deux ou plusieurs dimensions. Elle est également connue sous le nom de distance euclidienne standard ou distance L2. La distance euclidienne mesure la longueur de la ligne droite entre deux points dans l'espace et est calculée comme la racine carrée de la somme des carrés de la différence entre les composantes de chaque point.
En d'autres termes, si nous considérons deux points A(x1, y1) et B(x2, y2), la distance euclidienne entre eux est calculée comme:
distance = sqrt((x2-x1)^2 + (y2-y1)^2)
Par exemple, si A a des coordonnées (1,2) et B a des coordonnées (4,5), la distance euclidienne entre les deux points est:
distance = sqrt((4-1)^2 + (5-2)^2) = sqrt(9+9) = 3*sqrt(2)
La distance euclidienne est couramment utilisée dans divers domaines, tels que la géométrie, la statistique et la classification de données, pour mesurer la similitude entre deux points ou objets.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page